Giải: a) $|3x + 1| < 4$ b) $|3x + 5| > 2$ c) $|x+3| \ge$ 2x + 1

1 câu trả lời

Đáp án:

\(\begin{array}{l}
a)  1 > x > \dfrac{-5}{3}\\
b)\left[ \begin{array}{l}
x >  - 1\\
x <  - \dfrac{7}{3}
\end{array} \right.\\
c) - \dfrac{1}{2} \le x \le 2
\end{array}\)

Giải thích các bước giải:

\(\begin{array}{l}
a)\left| {3x + 1} \right| < 4\\
 \to 9{x^2} + 6x + 1 < 16\\
 \to 9{x^2} + 6x - 15 < 0\\
 \to \left( {x - 1} \right)\left( {3x + 5} \right) < 0\\
 \to   1 > x > \dfrac{-5}{3}\\
b)\left| {3x + 5} \right| > 2\\
 \to 9{x^2} + 30x + 25 > 4\\
 \to 9{x^2} + 30x + 21 > 0\\
 \to 3\left( {x + 1} \right)\left( {3x + 7} \right) > 0\\
 \to \left[ \begin{array}{l}
x >  - 1\\
x <  - \dfrac{7}{3}
\end{array} \right.\\
c)DK:x \ge  - \dfrac{1}{2}\\
\left| {x + 3} \right| \ge 2x + 1\\
 \to {x^2} + 6x + 9 \ge 4{x^2} + 4x + 1\\
 \to 3{x^2} - 2x - 8 \le 0\\
 \to \left( {x - 2} \right)\left( {3x + 4} \right) \le 0\\
 \to  - \dfrac{4}{3} \le x \le 2
\end{array}\)

\(KL: - \dfrac{1}{2} \le x \le 2\)

Câu hỏi trong lớp Xem thêm