1 câu trả lời
Đáp án:
\(\begin{array}{l}
d)\left[ \begin{array}{l}
x = 12\\
x = - 12\\
x = 6\\
x = 4\\
x = - 4\\
x = 3\\
x = - 3\\
x = 2\\
x = - 2\\
x = 1\\
x = - 1
\end{array} \right.\\
e)x < 0;x \ne - 6
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ne \left\{ { - 6;0} \right\}\\
P = \dfrac{{{x^3} + 2{x^2} + 2\left( {x - 6} \right)\left( {x + 6} \right) + 108 - 6x}}{{2x\left( {x + 6} \right)}}\\
= \dfrac{{{x^3} + 2{x^2} + 2{x^2} - 72 + 108 - 6x}}{{2x\left( {x + 6} \right)}}\\
= \dfrac{{{x^3} + 4{x^2} - 6x + 36}}{{2x\left( {x + 6} \right)}}\\
= \dfrac{{\left( {x + 6} \right)\left( {{x^2} - 2x + 6} \right)}}{{2x\left( {x + 6} \right)}}\\
= \dfrac{{{x^2} - 2x + 6}}{{2x}}\\
d)P = \dfrac{{{x^2} - 2x + 6}}{{2x}}\\
\to 2P = \dfrac{{2{x^2} - 4x + 24}}{{2x}}\\
= x - 2 + \dfrac{{12}}{x}\\
P \in Z \to \dfrac{{12}}{x} \in Z\\
\to x \in U\left( {12} \right)\\
\to \left[ \begin{array}{l}
x = 12\\
x = - 12\\
x = 6\\
x = - 6\left( l \right)\\
x = 4\\
x = - 4\\
x = 3\\
x = - 3\\
x = 2\\
x = - 2\\
x = 1\\
x = - 1
\end{array} \right.\\
e)P < 1\\
\to \dfrac{{{x^2} - 2x + 6}}{{2x}} < 1\\
\to \dfrac{{{x^2} - 2x + 6 - 2x}}{{2x}} < 0\\
\to \dfrac{{{x^2} - 4x + 6}}{{2x}} < 0\\
\to 2x < 0\left( {do:{x^2} - 4x + 6 > 0\forall x} \right)\\
\to x < 0;x \ne - 6
\end{array}\)