D=1 +3+3^2+3^3+...+3^2021+3^2022 CM D -1 chia hết cho 13

2 câu trả lời

Đáp án+Giải thích các bước giải:

$D=1+3+3^2+3^3+...+3^{2021}+3^{2022}$

$D-1=1+3+3^2+3^3+...+3^{2021}+3^{2022}-1$

$D-1=3+3^2+3^3+...+3^{2021}+3^{2022}$

$D-1=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2020}(1+3+3^2)$

$D-1=(1+3+3^2)(3+3^4+...+3^{2020})$

$D-1=13(3+3^4+...+3^{2020})$

$\text{Vì 13 $\vdots$ 13}$

$\Rightarrow$ $\text{$13(3+3^4+...+3^{2020})$ $\vdots$ 13}$

$\Rightarrow$ $\text{D $-$ 1 $\vdots$ 13}$

$#tintinday$

Giải thích các bước giải:

$\text{Ta có: D = 1 + 3 + 3² + 3³ +...+ $3^{2021}$ + $3^{2022}$}$

$\text{⇒ D - 1 = 3 + 3² + 3³ +...+ $3^{2021}$ + $3^{2022}$}$

$\text{⇒ D - 1 = 3 + 3² + 3³ +...+ $3^{2021}$ + $3^{2022}$}$

$\text{⇒ D - 1 = (3 + 3² + 3³) +...+ ($3^{2020}$ + $3^{2021}$ + $3^{2022}$)}$

$\text{⇒ D - 1 = 3(1 + 3 + 3²) +...+ $3^{2020}$(1 + 3 + 3²)}$

$\text{⇒ D - 1 = 3 . 13 +...+ $3^{2020}$ . 13}$

$\text{⇒ D - 1 = 13(3 +...+ $3^{2020}$)}$

$\text{Vì 13 $\vdots$ 13 ⇒ 13(3 +...+ $3^{2020}$) $\vdots$ 13}$

$\text{ Hay D - 1 $\vdots$ 13}$

$\textit{@Ngốc}$