chứng minh rằng nếu p là số nguyên tố lớn hơn 3, sao cho 10p+1 cũng là số nguyên tố thì 5p+1 là một bội số của 6 lưu ý phải chứng minh 5p+1 chia hết cho 2 và 3
1 câu trả lời
Đáp án+Giải thích các bước giải:
`P` là số nguyên tố lớn hơn `3`
`-> p \cancel{vdots} 3`
Mà `(10;3)=1`
`-> 10p \cancel{vdots} 3`
`-> 10p+1 > 3`
Mà `10p+1` là số nguyên tố
`-> 10p+1 \cancel{vdots} 3`
Mà tích `3` số tự nhiên liên tiếp luôn chia hết cho 3`
`-> 10p(10p+1)(10p+2) \vdots 3`
Mà `10p` và `10p+1` không chia hết cho 3`
`-> 10p+2 \vdots 3`
`-> 2(5p+1) \vdots 3`
Mà `(2;3)=1`
`-> 5p+1 \vdots 3(1)`
`p` là số nguyên tố lớn hơn `3`
`-> p` lẻ
`-> 5p` lẻ
`-> 5p+1` chẵn
`-> 5p+1 \vdots 2(2)`
Từ `(1)` và `(2)`
`-> 5p+1 \vdots 6`
Câu hỏi trong lớp
Xem thêm