Chứng minh $1+\dfrac{1}{2}+\dfrac{1}{3}+\dots+\dfrac{1}{32} >3.$
2 câu trả lời
Đáp án:
`A > 3`
Giải thích các bước giải:
Gọi `A = 1 + 1/2 + 1/3 + .... + 1/32`
` = 1 + (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9+ 1/10 + ... + 1/16) + (1/17 + 1/18 + 1/19 + .... + 1/32)`
Xét tổng :
* `1/2 + 1/3 + 1/4 > 1/2 + 1/4 + 1/4`
`=> 1/2 + 1/3 + 1/4 > 1`
* `1/5 + 1/6 + 1/7 + 1/8 > 1/8 + 1/8 + 1/8 + 1/8`
`=> 1/5 + 1/6 + 1/7 + 1/8 > 1/2`
* `1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 > 1/16 + 1/16 + 1/16 + .... + 1/16`
`=> 1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 >1/2`
* `1/17 + 1/18 + 1/19 + .... + 1/32 > 1/32 + 1/32 + 1/32 + .... + 1/32`
`=> 1/17 + 1/18 + 1/19 + .... + 1/32 > 1/2`
`=> A > 1 + 1 + 1/2 + 1/2 + 1/2`
`=> A > 2 + 3/2 > 2 + 1`
`=> A > 3` (đpcm)
Đáp án + Giải thích các bước giải:
`1+1/2+1/3+...+1/32=1+1/2+(1/3+1/4)+(1/5+...+1/8)+(1/9+...+1/16)+(1/17+...+1/32)`
`>1+1/2+(1/4+1/4)+(1/8+...+1/8)+(1/16+...+1/16)+(1/32+...+1/32)`
`=1+1/2+2.1/4+4.1/8+8.1/16+16.1/32=7/2>3`