Cho tam giác nhọn ABC. Các đường cao AA',BB' , CC' cắt nhau tại H => HA/AA'+HB/BB'+HC/CC'= Giúp mik chiều mik cần rồi ạ! Xin cảm ơn🥰
1 câu trả lời
Đáp án: $\dfrac{HA}{AA'}+\dfrac{HB}{BB'}+\dfrac{HC}{CC'}=2$
Giải thích các bước giải:
Ta có:
${{S}_{\Delta HBC}}=\dfrac{1}{2}HA'.BC$
${{S}_{\Delta ABC}}=\dfrac{1}{2}AA'.BC$
$\Rightarrow \dfrac{{{S}_{\Delta HBC}}}{{{S}_{\Delta ABC}}}=\dfrac{HA'}{AA'}$
$\Rightarrow \dfrac{{{S}_{\Delta HBC}}}{{{S}_{\Delta ABC}}}=\dfrac{HA'+HA}{AA'}-\dfrac{HA}{AA'}$
$\Rightarrow \dfrac{{{S}_{\Delta HBC}}}{{{S}_{\Delta ABC}}}=\dfrac{AA'}{AA'}-\dfrac{HA}{AA'}$
$\Rightarrow \dfrac{HA}{AA'}=1-\dfrac{{{S}_{\Delta HBC}}}{{{S}_{\Delta ABC}}}$
Chứng minh tương tự:
$\dfrac{HB}{BB'}=1-\dfrac{{{S}_{\Delta HCA}}}{{{S}_{\Delta ABC}}}$
$\dfrac{HC}{CC'}=1-\dfrac{{{S}_{\Delta HAB}}}{{{S}_{\Delta ABC}}}$
$\Rightarrow \dfrac{HA}{AA'}+\dfrac{HB}{BB'}+\dfrac{HC}{CC'}=3-\left( \dfrac{{{S}_{\Delta HBC}}+{{S}_{\Delta HCA}}+{{S}_{\Delta HAB}}}{{{S}_{\Delta ABC}}} \right)$
$\Rightarrow \dfrac{HA}{AA'}+\dfrac{HB}{BB'}+\dfrac{HC}{CC'}=3-\dfrac{{{S}_{\Delta ABC}}}{{{S}_{\Delta ABC}}}$
$\Rightarrow \dfrac{HA}{AA'}+\dfrac{HB}{BB'}+\dfrac{HC}{CC'}=3-1$
$\Rightarrow \dfrac{HA}{AA'}+\dfrac{HB}{BB'}+\dfrac{HC}{CC'}=2$