Cho tam giác ABC.Đặt vecto AB=vecto u ,vecto AC=vecto v.a,gọi P là điểm đối xứng với B qua C .Phân tích vecto AP theo vecto u và vecto v.b,gọi Q và R là 2 điểm thỏa mãn vecto AQ=1/2 vecto AC, vecto AP = 1/2 vecto AB.Phân tích vecto RP và vecto RQ theo vecto u và vecto v.
1 câu trả lời
Vì C là trung điểm BP -> AC là đường trung tuyến của tam giác ABP
-> 2AC=AB+AP
-> AP=2AC-AB
RP=AP-AR=2AC-AB-1/2AB=2v-3/2u
RQ=AQ-AR=1/2AC-1/2AB=1/2v-1/2u
Câu hỏi trong lớp
Xem thêm