Cho tam giác ABC có AM là đường trung tuyến, MD là đường phân giác của góc AMB; ME là đường phân giác của góc AMC. Chứng minh: a) DE//BC b) Tam giác ABC phải thoả điều kiện gì để có DE vuông góc AM

2 câu trả lời

Đáp án `+` Giải thích các bước giải:

  `a.` C/m :

`-` Xét `\triangleAMB` và `\triangleAMC` ta có :

`+` $ME$ là phân giác `→` $\dfrac{AD}{DB}=\dfrac{AM}{BM}$

`+` $MD$ là phân giác `→` $dfrac{AE}{CE}=\dfrac{AD}{DB}=\dfrac{AM}{BM}(MC=MB)$

`=>` $\dfrac{AE}{EC}=\dfrac{AD}{DB}$ 

`=>` $DE//BC$ `(` Theo định lí Ta lét `)`

 `b.` Tam giác $ABC$ phải TMĐK 

`-` `\triangleABC` cân tại $A$ 

`(` Có $AM$ vừa là đường trung tuyến vừa là đường phân giác ,đường cao, đường trung trực 

Khi ấy $AM$ vuông góc $BC$ mà $DE//BC$ `⇒` $DE⊥AM$ `)`

$#Kiều$

Giải thích các bước giải:

a.Ta có $M$ là trung điểm $BC\to MB=MC$

Vì $MD, ME$ là phân giác $\widehat{AMB},\widehat{AMC}$

$\to \dfrac{DA}{DB}=\dfrac{MA}{MB}=\dfrac{MA}{MC}=\dfrac{EA}{EC}$

$\to DE//BC$

b.Để $DE\perp AM$

$\to AM\perp BC$ vì $DE//BC$

$\to\Delta ABC$ có đường cao đồng thời là trung tuyến

$\to\Delta ABC$ cân tại $A$

 

Câu hỏi trong lớp Xem thêm
4 lượt xem
2 đáp án
16 giờ trước