Cho hình chóp SABC có đáy là tam giác vuông cân tại B . AB= a , SA vuông với đáy vs SB tạo với đáy 1 góc 60 độ . Khoảng cách từ A đến (SBC) là

2 câu trả lời

Đáp án:

Giải thích các bưAB BC a d B SAC BH

AB BC

Þ

ớc giải: Kẻ BH AC H A

C BH SAC ^ Î Þ^ ( ) ( )

Đáp án:

$d(A;(SBC)) = \dfrac{a\sqrt3}{2}$

Giải thích các bước giải:

Ta có:

$ΔABC$ vuông cân tại $A$ cạnh $AB = a$

$\Rightarrow S_{ABC} = \dfrac{a^2}{2}$

Bên cạnh đó:

$SA\perp (ABC)$

$\Rightarrow \widehat{(SB;(ABC))} = \widehat{SBA} = 60^o$

$\Rightarrow \begin{cases}SA = AB.\tan60^o = a\sqrt3\\SB = \dfrac{AB}{\cos60^o} = 2a\end{cases}$

$\Rightarrow V_{S.ABC} = \dfrac{1}{3}S_{ABC}.SA = \dfrac{1}{3}\cdot\dfrac{a^2}{2}\cdot a\sqrt3 = \dfrac{a^3\sqrt3}{6}$

Mặt khác:

$CB\perp AB$

$CB\perp SA \quad (SA\perp (ABC))$

$\Rightarrow CB\perp (SAB)$

$\Rightarrow CB\perp SB$

$\Rightarrow S_{SCB} = \dfrac{1}{2}CB.SB = \dfrac{1}{2}.a.2a = a^2$

Ta có:

$V_{A.SBC} = \dfrac{1}{3}S_{SBC}.d(A;(SBC))$

$\Leftrightarrow d(A;(SBC)) = \dfrac{3V_{A.SBC}}{S_{SBC}} = \dfrac{3V_{S.ABC}}{S_{SBC}}$

$\Leftrightarrow d(A;(SBC)) = \dfrac{3\cdot\dfrac{a^3\sqrt3}{6}}{a^2} = \dfrac{a\sqrt3}{2}$

Câu hỏi trong lớp Xem thêm