Cho A=7+7^2+7^3+...+7^120. Chứng minh tằng A chia hết cho 57
2 câu trả lời
Đáp án:
`A=7+7^2+7^3+7^4+.....+7^119+7^120`
`A=(7+7^2+7^3)+(7^4+7^5+7^6)+......+(7^118+7^119+7^120)`
`A=7.(1 + 7 +7^2)+7^4.(1 + 7 +7^2)+.....+7^118.(1 + 7 +7^2)`
`A=7. 57+7^4.57+.........+7^118.57`
`A = 57.(7 + 7^4 + ... + 7^118)`
Do: `57 ⋮57`
`-> 57.(7 + 7^4 + ... + 7^118) ⋮57`
`-> A ⋮57`
Vậy `A ⋮57`
$#dariana$
Giải thích các bước giải:
A=7+7^2+7^3+.....+7^119+7^120
=7(1+7+7^2)+...+7^118 (1+7+7^2)
=7.57+..+7^118 .57
=57(7+...+7^118) chia hết cho 57
Câu hỏi trong lớp
Xem thêm