Cho A = 4 + 4^2 + 4^3 + ... + 4^24 . CMR A chia hết 420

2 câu trả lời

Đáp án+Giải thích các bước giải:

`A=4 + 4^2 + 4^3 + ... + 4^24`

`⇔A=(4+4^2)+(4^3+4^4)+...+(4^23+4^24)`

`⇔A=1(4+4^2)+4^2(4+4^2)+...+4^22(4+4^2)`

`⇔A=1 . 20 + 4^2 . 20 + ... + 4^22 . 20`

`⇔A=(1 + 4^2 + ... + 4^22) . 20`

Mà `20vdots20⇒Avdots20` `(1)`

`A=4 + 4^2 + 4^3 + ... + 4^24`

`⇔A=(4+4^2+4^3)+(4^4+4^5+4^6)+...+(4^22+2^23+4^24)`

`⇔A=4(1+4+4^2)+4^4(1+4+4^2)+...+4^22(1+4+4^2)`

`⇔A=4.21 + 4^4.21 + ... + 4^22.21`

`⇔A=(4 + 4^4+...+4^22).21`

Mà `21 vdots 21⇒A vdots 21` `(2)`

Từ `(1);(2)` ta thấy :

`A vdots 420` vì `20 . 21 = 420`

`⇒A vdots420 (đpcm)`

Ta có: A = 4 + $4^{2}$ `+` $4^{3}$ `+ ... +` $4^{24}$ 

`=> A = (4 +` $4^{2}$`) + (`$4^{3}$ `+` $4^{4}$`) + ... + (`$4^{23}$ `+` $4^{24}$`)`

`=> A = 1.(4 +` $4^{2}$`) +` $4^{2}$`.(4 +` $4^{2}$`) + ... +` $4^{22}$`.(4 +` $4^{2}$`)`

`=> A = 1.20 +` $4^{2}$`.20 + ... +` $4^{22}$`.20`

`=> A = (1 +` $4^{2}$ `+ ... +` $4^{22}$`).20`

`=> A` $\vdots$ `20`

Ta có: A = 4 + $4^{2}$ `+` $4^{3}$ `+ ... +` $4^{24}$ 

`=> A = (4 +` $4^{2}$ `+` $4^{3}$`) + ... + (`$4^{22}$ `+` $4^{23}$ `+` $4^{24}$`)`

`=> A = 4.(1 + 4 +` $4^{2}$`) + ... +` $4^{22}$`.(1 + 4 +` $4^{2}$`)`

`=> A = 4 . 21 + ... +` $4^{22}$ `. 21`

`=> A = (4 + ... +` $4^{22}$`).21`

`=> A` $\vdots$ `21`

Ta có: `A` $\vdots$ `20 ; 21`

`=> A` $\vdots$ `20 . 21`

`=> A` $\vdots$ `420 (dpcm)`

`#DungSenpai1412`