Cho A = 4 + 4^2 + 4^3 + ... + 4^24 . CMR A chia hết 420
2 câu trả lời
Đáp án+Giải thích các bước giải:
`A=4 + 4^2 + 4^3 + ... + 4^24`
`⇔A=(4+4^2)+(4^3+4^4)+...+(4^23+4^24)`
`⇔A=1(4+4^2)+4^2(4+4^2)+...+4^22(4+4^2)`
`⇔A=1 . 20 + 4^2 . 20 + ... + 4^22 . 20`
`⇔A=(1 + 4^2 + ... + 4^22) . 20`
Mà `20vdots20⇒Avdots20` `(1)`
`A=4 + 4^2 + 4^3 + ... + 4^24`
`⇔A=(4+4^2+4^3)+(4^4+4^5+4^6)+...+(4^22+2^23+4^24)`
`⇔A=4(1+4+4^2)+4^4(1+4+4^2)+...+4^22(1+4+4^2)`
`⇔A=4.21 + 4^4.21 + ... + 4^22.21`
`⇔A=(4 + 4^4+...+4^22).21`
Mà `21 vdots 21⇒A vdots 21` `(2)`
Từ `(1);(2)` ta thấy :
`A vdots 420` vì `20 . 21 = 420`
`⇒A vdots420 (đpcm)`
Ta có: A = 4 + $4^{2}$ `+` $4^{3}$ `+ ... +` $4^{24}$
`=> A = (4 +` $4^{2}$`) + (`$4^{3}$ `+` $4^{4}$`) + ... + (`$4^{23}$ `+` $4^{24}$`)`
`=> A = 1.(4 +` $4^{2}$`) +` $4^{2}$`.(4 +` $4^{2}$`) + ... +` $4^{22}$`.(4 +` $4^{2}$`)`
`=> A = 1.20 +` $4^{2}$`.20 + ... +` $4^{22}$`.20`
`=> A = (1 +` $4^{2}$ `+ ... +` $4^{22}$`).20`
`=> A` $\vdots$ `20`
Ta có: A = 4 + $4^{2}$ `+` $4^{3}$ `+ ... +` $4^{24}$
`=> A = (4 +` $4^{2}$ `+` $4^{3}$`) + ... + (`$4^{22}$ `+` $4^{23}$ `+` $4^{24}$`)`
`=> A = 4.(1 + 4 +` $4^{2}$`) + ... +` $4^{22}$`.(1 + 4 +` $4^{2}$`)`
`=> A = 4 . 21 + ... +` $4^{22}$ `. 21`
`=> A = (4 + ... +` $4^{22}$`).21`
`=> A` $\vdots$ `21`
Ta có: `A` $\vdots$ `20 ; 21`
`=> A` $\vdots$ `20 . 21`
`=> A` $\vdots$ `420 (dpcm)`
`#DungSenpai1412`