Cho 2 số nguyên dương a và b ( a lớn hơn hoặc bằng b ) đều ko chia hết cho 5 . Cmr : a^4 - b^4 chia hết cho 5

2 câu trả lời

Bạn tham khảo nhé

Ta chứng minh bổ đề sau :

Với `k` là số nguyên thỏa mãn `k` không chia hết cho `5`

Thì `k^4-1` chia hết cho `5`

Thật vậy do `k` không chia hết cho `5` và `k\in ZZ`

`->` Sẽ xảy ra 4 trường hợp :

`k\vdots 5` dư `1,k\vdots 5` dư `-1,k\vdots 5` dư `2,k\vdots 5` dư `-2`

Không mất tính tổng quát giả sử `k\vdots 5` dư `1`

`->k^4\vdots 5` dư `1`

Khi đó : `k^4=5.q+1(q\in ZZ)`

`->k^4-1=5q \vdots 5`

`-> k^4-1\vdots 5`

Thật vậy bổ đề được chứng minh.

Vận dụng vào bài toàn ta được :

`a^4-1\vdots 5, b^4-1\vdots 5`

`->a^4-1-b^4+1\vdots 5`

`->a^4-b^4\vdots 5` (đpcm)

Câu hỏi trong lớp Xem thêm
4 lượt xem
2 đáp án
20 giờ trước