Câu 28. Chứng minh (x + 1)(x^2 - x + 1)-(x - 1)(x^2 + x + 1) = 2 Câu 29. Chứng minh (x + y)^2 + (x - y)^2 + 2(x + y)(x - y) = 4x^2 giúp vs nha
2 câu trả lời
Câu `28.` $\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)=2$
Ta xét VT `=` $\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)$
$=x^3+1-\left(x-1\right)\left(x^2+x+1\right)$
$=x^3+1-x^3+1$
$=x^3-x^3+1+1$
$=1+1$
$=2$ `=` VP (đpcm)
Câu `29.` $\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)=4x^2$
Ta xét VT `=` $\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)$
$=x^2+2xy+y^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)$
$=x^2+2xy+y^2+x^2-2xy+y^2+2\left(x+y\right)\left(x-y\right)$
$=x^2+2xy+y^2+x^2-2xy+y^2+2x^2-$
$=x^2+x^2+2x^2+2xy-2xy+y^2+y^2-2y^2$
$=4x^2+2xy-2xy+y^2+y^2-2y^2$
$=4x^2+y^2+y^2-2y^2$
$=4x^2$ `=` VP (đpcm)
Câu 28.
Vế trái:
$=x^3+1-(x^3-1)$
$=x^3+1-x^3+1$
$=2$ (Bằng vế phải)
$=>$ đpcm.
Câu 29.
Vế trái:
$=(x+y)^2+2(x+y)(x-y)+(x-y)^2$
$=(x+y+x-y)^2$
$=(2x)^2$
$=4x^2$ (Bằng vế phải)
$=>$ đpcm.