C=[2a^(-2/3) - 1/2 a^(3/2)]^3 Mấy chế rút gọn bt này giúp với
1 câu trả lời
\[\begin{array}{l} C = {\left( {2{a^{ - \frac{2}{3}}} - \frac{1}{2}{a^{\frac{3}{2}}}} \right)^3} = {\left( {\frac{2}{{{a^{\frac{2}{3}}}}} - \frac{1}{2}{a^{\frac{3}{2}}}} \right)^3} = {\left( {\frac{2}{{\sqrt[3]{{{a^2}}}}} - \frac{{\sqrt {{a^3}} }}{2}} \right)^3}\\ = {\left( {\frac{2}{{\sqrt[3]{{{a^2}}}}}} \right)^3} - 3.{\left( {\frac{2}{{\sqrt[3]{{{a^2}}}}}} \right)^2}.\frac{{\sqrt {{a^3}} }}{2} + 3.\frac{2}{{\sqrt[3]{{{a^2}}}}}.{\left( {\frac{{\sqrt {{a^3}} }}{2}} \right)^2} - {\left( {\frac{{\sqrt {{a^3}} }}{2}} \right)^3}\\ = \frac{8}{{{a^2}}} - .\frac{{12}}{{\sqrt[3]{{{a^4}}}}}.\frac{{\sqrt {{a^3}} }}{2} + \frac{6}{{\sqrt[3]{{{a^2}}}}}.\frac{{{a^3}}}{4} - \frac{{{{\left( {\sqrt {{a^3}} } \right)}^3}}}{8}\\ = \frac{8}{{{a^2}}} - 6.{a^{\frac{3}{2} - \frac{4}{3}}} + \frac{3}{2}.{a^{\frac{3}{2} - \frac{2}{3}}} - \frac{{{a^3}}}{8}\\ = \frac{8}{{{a^2}}} - \frac{{{a^3}}}{8} - 6{a^{\frac{1}{6}}} + \frac{3}{2}{a^{\frac{7}{3}}}. \end{array}\]