C = ` (1+1/1.3) . (1+1/2.4) . (1+1/3.5) ... (1+1/2018.2020) `

2 câu trả lời

Đáp án:

$\dfrac{2019}{1010}$.

Giải thích các bước giải:

$\left(1+\dfrac1{1.3}\right)\!\!\left(1+\dfrac1{2.4}\right)\!\!\left(1+\dfrac1{3.5}\right)\!.\!.\!.\!\left(1+\dfrac1{2018.2020}\right)\\=\dfrac{4}{1.3}\!\cdot\!\dfrac9{2.4}\!\cdot\!\dfrac{16}{3.5}\;\!\cdot\,.\!.\!.\cdot\;\!\dfrac{2018.2020+1}{2018.2020}\\=\dfrac{4}{1.3}\!\cdot\!\dfrac9{2.4}\!\cdot\!\dfrac{16}{3.5}\;\!\cdot\,.\!.\!.\cdot\;\!\dfrac{2018.(2019+1)+1}{2018.2020}\\=\dfrac{4}{1.3}\!\cdot\!\dfrac9{2.4}\!\cdot\!\dfrac{16}{3.5}\;\!\cdot\,.\!.\!.\cdot\;\!\dfrac{2018.2019+2018+1}{2018.2020}\\=\dfrac{4}{1.3}\!\cdot\!\dfrac9{2.4}\!\cdot\!\dfrac{16}{3.5}\;\!\cdot\,.\!.\!.\cdot\;\!\dfrac{2018.2019+2019}{2018.2020}\\=\dfrac{4}{1.3}\!\cdot\!\dfrac9{2.4}\!\cdot\!\dfrac{16}{3.5}\;\!\cdot\,.\!.\!.\cdot\;\!\dfrac{2019.(2018+1)}{2018.2020}\\=\dfrac{2.2}{1.3}\!\cdot\!\dfrac{3.3}{2.4}\!\cdot\!\dfrac{4.4}{3.5}\;\!\cdot\,.\!.\!.\cdot\;\!\dfrac{2019.2019}{2018.2020}\\=\dfrac{2.2.3.3.4.4...2019.2019}{1.3.2.4.3.5...2018.2020}\\=\dfrac{(2.3.4...2019)(2.3.4...2019)}{(1.2.3...2018)(3.4.5...2020)}\\=\dfrac{2019.2}{1.2020}\\=\dfrac{2019}{1010}$

Đáp án:

`C =2019/1010`

Giải thích các bước giải:

`C = (1 + 1/(1.3)) . (1 + 1/(2.4)) . (1 + 1/(3.5)) . ... . (1 + 1/(2018.2020))`

`C = (3/3 + 1/(1.3)) . (8/8 + 1/(2.4)) . (15/15 + 1/(3.5)) . ... . (4060225/4060225 1/(2018.2020))`

`C = (2^2)/(1.3) . (3^2)/(2.4) . (4^2)/(3.5) . ... . (2015^2)/(2018.2020)`

`C = (2.3.4 .... .2019)/(1.2.3....2018) . (2.3.4....2019)/(3.4.5.....2020)`

`C = 2019 . 1/1010`

`C =2019/1010`

Câu hỏi trong lớp Xem thêm