Bài 1 Giải bất pt TAM THỨC BẬC 2 a,-x² + 5x - 4 > 0 b,-x² - 9x + 10 < 0 c,x² - 7x + 6 ≥ 0 d,x² - 10x + 21 ≤ 0
1 câu trả lời
Đáp án:
a) \(x \in \left( {1;4} \right)\)
b) \(x \in \left( { - \infty ; - 10} \right) \cup \left( {1; + \infty } \right)\)
c) \(x \in \left( { - \infty ;1} \right] \cup \left[ {6; + \infty } \right)\)
d) \(x \in \left[ {3;7} \right]\)
Giải thích các bước giải:
\(\begin{array}{l}
a) - {x^2} + 5x - 4 > 0\\
\to \left( {4 - x} \right)\left( {x - 1} \right) > 0
\end{array}\)
BXD:
x -∞ 1 4 +∞
f(x) - 0 + 0 -
\(KL:x \in \left( {1;4} \right)\)
\(\begin{array}{l}
b) - {x^2} - 9x + 10 < 0\\
\to \left( {1 - x} \right)\left( {x + 10} \right) < 0
\end{array}\)
BXD:
x -∞ -10 1 +∞
f(x) - 0 + 0 -
\( \to x \in \left( { - \infty ; - 10} \right) \cup \left( {1; + \infty } \right)\)
\(\begin{array}{l}
c){x^2} - 7x + 6 \ge 0\\
\to \left( {x - 1} \right)\left( {x - 6} \right) \ge 0
\end{array}\)
BXD:
x -∞ 1 6 +∞
f(x) + 0 - 0 +
\( \to x \in \left( { - \infty ;1} \right] \cup \left[ {6; + \infty } \right)\)
\(\begin{array}{l}
d){x^2} - 10x + 21 \le 0\\
\to \left( {x - 7} \right)\left( {x - 3} \right) \le 0
\end{array}\)
BXD:
x -∞ 3 7 +∞
f(x) + 0 - 0 +
\( \to x \in \left[ {3;7} \right]\)