A = 51^n + 47^102 (n thuộc N ) Cm: A chia hết 10
2 câu trả lời
`51^n + 47^(102)`
`= \overline{.....1} + 47^(100) * 47^2`
`= \overline{.....1} (47^4)^25 * \overline{(....1)} `
`= \overline{.....1} * \overline{(....1)} * \overline{(....9)}`
`= \overline{....1} + \overline{...9}`
`= \overline{...0}`
Vì `0 vdots 10` nên `A vdots 10 `
`A=51^n + 47^102`
Có `51^n=(\overline{...1})`
`47^102=(47^2)^51=(\overline{...9})^51=(\overline{...9})^48.(\overline{...9})^3=(\overline{...9})^(4.12).(\overline{...9})=(\overline{...1}).(\overline{...9})=(\overline{...9})`
`A=(\overline{...1})+(\overline{...9})=(\overline{...0})`
⇒ `A\vdots10`