A= 4 + 4^2 + 4^3 + .........+ 4^24 Cm: a chia hết cho 20 , 21
2 câu trả lời
A=4+42+43+...
A = (4 + 4^{2}) + (4^{3} + 4^{4}) + ... + (4^{23} + 4^{24})
A = 20 + 4^{2} . (4 + 4^{2}) + ... + 4^{22} . (4 + 4^{2})
A = 20 + 4^{2} . 20 + ... + 4^{22} . 20
A = 20 . (1 + 4^{2} + ... + 4^{22})
→ A chia hết cho 20.
\text{_________________________________________________}
A = 4 + 4^{2} + 4^{3} + ... + 4^{24}
A = (4 + 4^{2} + 4^{3}) + (4^{4} + 4^{5} + 4^{6}) + ... + (4^{22} + 4^{23} + 4^{24})
A = 84 + 4^{3} . (4 + 4^{2} + 4^{3}) + ... + 4^{21} . (4 + 4^{2} + 4^{3})
A = 84 + 4^{3} . 84 + ... + 4^{21} . 84
A = 84 . (1 + 4^{3} + ... + 4^{21})
→ A chia hết cho 84.
→ A chia hết cho 21.
A = 4 + 4^2 + 4^3 + ... + 4^24
=> A = ( 4 + 4^2 ) + ( 4^3 + 4^4 ) + ... + ( 4^23 + 4^24 )
=> A = 1 . ( 4 + 4^2) + 4^2 . ( 4 + 4^2 ) + ... + 4^22 . ( 4 + 4^2 )
=> A = 1 . 20 + 4^2 . 20 + ... + 4^22 . 20
=> A = 20 . ( 1 + 4^2 + ... + 4^22 ) \vdots 20
Vậy A \vdots 20
...
A = 4 + 4^2 + 4^3 + ... + 4^24
=> A= ( 4 + 4^2 + 4^3 ) + ... + ( 4^22 + 4^23 + 4^24 )
=> A = 4 . ( 1 + 4 + 4^2 ) + ... + 4^22 . ( 1 + 4 + 4^2 )
=> A = 4 . 21 + ... + 4^22 . 21
=> A = 21 . ( 4 + ... + 4^22) \vdots 21
Vậy A \vdots 21
#dtkc