A= 4 + 4^2 + 4^3 + .........+ 4^24 Cm: a chia hết cho 20 , 21

2 câu trả lời

`A = 4 + 4^{2} + 4^{3} + ... + 4^{24}`

`A = (4 + 4^{2}) + (4^{3} + 4^{4}) + ... + (4^{23} + 4^{24})`

`A = 20 + 4^{2} . (4 + 4^{2}) + ... + 4^{22} . (4 + 4^{2})`

`A = 20 + 4^{2} . 20 + ... + 4^{22} . 20`

`A = 20 . (1 + 4^{2} + ... + 4^{22})`

→ `A` chia hết cho `20.`

`\text{_________________________________________________}`

`A = 4 + 4^{2} + 4^{3} + ... + 4^{24}`

`A = (4 + 4^{2} + 4^{3}) + (4^{4} + 4^{5} + 4^{6}) + ... + (4^{22} + 4^{23} + 4^{24})`

`A = 84 + 4^{3} . (4 + 4^{2} + 4^{3}) + ... + 4^{21} . (4 + 4^{2} + 4^{3})`

`A = 84 + 4^{3} . 84 + ... + 4^{21} . 84`

`A = 84 . (1 + 4^{3} + ... + 4^{21})`

→ `A` chia hết cho `84.`

→ `A` chia hết cho `21.`

`A = 4 + 4^2 + 4^3 + ... + 4^24`

`=> A = ( 4 + 4^2 ) + ( 4^3 + 4^4 ) + ... + ( 4^23 + 4^24 )`

`=> A = 1 . ( 4 + 4^2) + 4^2 . ( 4 + 4^2 ) + ... + 4^22 . ( 4 + 4^2 )`

`=> A = 1 . 20 + 4^2 . 20 + ... + 4^22 . 20`

`=> A = 20 . ( 1 + 4^2 + ... + 4^22 ) \vdots 20`

Vậy `A \vdots 20`

`...`

`A = 4 + 4^2 + 4^3 + ... + 4^24`

`=>  A= ( 4 + 4^2 + 4^3 ) + ... + ( 4^22 + 4^23 + 4^24 )`

`=> A = 4 . ( 1 + 4 + 4^2 ) + ... + 4^22 . ( 1 + 4 + 4^2 )`

`=> A = 4 . 21 + ... + 4^22 . 21`

`=> A = 21 . ( 4 + ... + 4^22) \vdots 21`

Vậy `A \vdots 21`

`#dtkc`