a) $\frac{2x+1}{2x^{2}-3x}-\frac{2}{2x-3}=\frac{1}{x}$ b) $\frac{1}{x-6}-\frac{2}{6+x}=\frac{3x+6}{x^{2}-36}$
2 câu trả lời
Đáp án:
$\begin{array}{l}
a)Dkxd:x \ne 0;x \ne \dfrac{3}{2}\\
\dfrac{{2x + 1}}{{2{x^2} - 3x}} - \dfrac{2}{{2x - 3}} = \dfrac{1}{x}\\
\Leftrightarrow \dfrac{{2x + 1 - 2x}}{{x\left( {2x - 3} \right)}} = \dfrac{{2x - 3}}{{x\left( {2x - 3} \right)}}\\
\Leftrightarrow 1 = 2x - 3\\
\Leftrightarrow 2x = 4\\
\Leftrightarrow x = 2\left( {tm} \right)\\
Vậy\,x = 2\\
b)Dk:x \ne 6;x \ne - 6\\
\dfrac{1}{{x - 6}} - \dfrac{2}{{6 + x}} = \dfrac{{3x + 6}}{{{x^2} - 36}}\\
\Leftrightarrow \dfrac{{x + 6 - 2\left( {x - 6} \right)}}{{\left( {x + 6} \right)\left( {x - 6} \right)}} = \dfrac{{3x + 6}}{{\left( {x + 6} \right)\left( {x - 6} \right)}}\\
\Leftrightarrow x + 6 - 2x + 12 = 3x + 6\\
\Leftrightarrow - x + 12 = 3x\\
\Leftrightarrow 4x = 12\\
\Leftrightarrow x = 3\left( {tm} \right)\\
Vậy\,x = 3
\end{array}$
Đáp án:
Giải thích các bước giải:
a) $\frac{2x+1}{2x^2-3x}$ - $\frac{2}{2x-3}$ = $\frac{1}{x}$
⇔ $\frac{2x+1}{x(2x-3)}$ - $\frac{2}{2x-3}$ = $\frac{1}{x}$
⇔ $\frac{2x+1}{x(2x-3)}$ - $\frac{2.x}{x(2x-3)}$ = $\frac{1.(2x-3)}{x(2x-3)}$
⇒ (2x + 1) - 2x = 1.(2x - 3)
⇔ 2x + 1 - 2x = 2x - 3
⇔ 1 = 2x - 3
⇔ -2x = -1 - 3
⇔ -2x = -4
⇔ x = 2
Vậy PT có nghiệm duy nhất là x = 2
b) $\frac{1}{x-6}$ - $\frac{2}{6+x}$ = $\frac{3x+6}{x^2-36}$
ĐKXĐ: x $\neq$ ±6
⇔ $\frac{1}{x-6}$ - $\frac{2}{x+6}$ = $\frac{3x+6}{(x-6)(x+6)}$
⇔ $\frac{1.(x+6)}{(x-6)(x+6)}$ - $\frac{2.(x-6)}{(x-6)(x+6)}$ = $\frac{3x + 6}{(x-6)(x+6)}$
⇒ 1.(x + 6) - 2.(x - 6) = 3x + 6
⇔ x + 6 - 2x + 12 = 3x + 6
⇔ x - 2x - 3x = 6 - 6 - 12
⇔ -4x = -12
⇔ x = 3
Vậy PT có nghiệm duy nhất là x = 3
