2 câu trả lời
`(9^14 . 25^3 . 8^7)/(18^12 . 625^3 . 24^3 )`
`= ((3^2)^14 . (5^2)^3 . (2^3)^7 )/((2.3^2)^12 . (5^4)^3 . (2^3 . 3)^3 )`
`= (3^28 . 5^6 . 2^21 )/(2^12 . 3^24 . 5^12 . 2^9 . 3^3 )`
`= (3^28 . 5^6 . 2^21 )/(2^21 . 3^27 . 5^12 )`
`= 3/5^6`
`= 3/15625`
`#dtkc`
Đáp án:
`3`
Giải thích các bước giải:
$\dfrac{9^{14} . 25^{6} . 8^{7}}{18^{12} . 625^{3} . 24^{3}}$
= $\dfrac{(3^2)^{14} . (5^2)^{6} . (2^3)^{7}}{(2.3^2)^{12} . (5^4)^{3} . (3.2^3)^{3}}$
= $\dfrac{3^{28} . 5^{12} . 2^{21}}{2^{21} . 3^{24} . 5^{12} . 3^{3} . 2^{9}}$
= $\dfrac{3^{28} . 5^{12} . 2^{21}}{2^{21} . 3^{27} . 5^{12} }$
= `3`
#nguyetphan52