(2x + 3) chia hết cho (x - 1) (5x - 1) chia hết cho (x + 3) (3x + 2) chia hết cho (2x - 7)
2 câu trả lời
`a) 2x + 3 \vdots x - 1`
` x - 1 \vdots x - 1`
`=> [(2x + 3) - 2(x - 1)] \vdots x - 1`
`=> [(2x + 3) - (2x - 2)] \vdots x - 1`
`=> 5 \vdots x - 1`
`=> x - 1 in Ư(5) = {1; -1; 5; -5}`
`=> x - 1 in {1; -1; 5; -5}`
`=> x in {2; 0; 6; -4}`
Vậy `x in {2; 0; 6; -4}`
`b) 5x - 1 \vdots x + 3`
` x + 3 \vdots x + 3`
`=> [(5x - 1) - 5(x + 3)] \vdots x + 3`
`=> [(5x - 1) - (5x + 13) \vdots x + 3`
`=> -14 \vdots x + 3`
`=> x + 3 in Ư(-14) = {1; -1; 2; -2; 7; -7; 14; -14}`
`=> x + 3 in {1; -1; 2; -2; 7; -7; 14; -14}`
`=> x in {-2; -4; -1; -5; 4; -10; 11; -17}`
Vậy ` x in {-2; -4; -1; -5; 4; -10; 11; -17}`
`c) 3x + 2 \vdots 2x - 7`
` 2x - 7 \vdots 2x - 7`
`=> [2(3x + 2) - 3(2x - 7)] \vdots 2x - 7`
`=> [(6x + 4) - (6x - 21)] \vdots 2x - 7`
`=> 25 \vdots 2x - 7`
`=> 2x - 7 in Ư(25) = {1; -1; 5; -5; 25; -25}`
`=> 2x - 7 in {1; -1; 5; -5; 25; -25}`
`=> 2x in {8; 6; 12; 2; 32; -18}`
`=> x in {4; 3; 6; 1; 18; -9}`
Vậy `x in {4; 3; 6; 1; 18; -9}`
Đáp án+Giải thích các bước giải:
2x+3 chia hết cho x-1
⇒ 2x-2+5 chia hết cho x-1
⇒ 2.(x-1)+5 chia hết cho x-1
Mà 2.(x-1) chia hết cho x-1
⇒ 5 chia hết cho x-1
⇒ x-1∈ Ư(5)={-5,-1,1,5}
⇒ x∈ {-4,0,2,6}
Mà x bé nhất
b)5x-1⋮x+3
x+3⋮x+3
⇒[(5x-1)-5(x+3)]⋮x+3
⇒[(5x-1)-(5x+13)⋮x+3
⇒-14⋮x+3
⇒x+3∈Ư(-14)={1;-1;2;-2;7;-7;14;-14}
⇒x+3∈{1;-1;2;-2;7;-7;14;-14}
⇒x∈{-2;-4;-1;-5;4;-10;11;-17}
Vậy
cho xin hay nhất