1 câu trả lời
Đáp án:
Giải thích các bước giải:
$\sqrt{2x+1}-\sqrt{x+1}=\sqrt{3(x+2)}$
ĐK: $\left\{\begin{matrix}
2x+1\geq 0 & & \\
x-1\geq0 & & \\
x+2\geq & &
\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\geq\frac{-1}{2} & & \\
x \geq1 & & \\
x\geq-2 & &
\end{matrix}\right.\Rightarrow x\geq 1$
$ \sqrt{2x+1}-\sqrt{x+1}=\sqrt{3(x+2)}\Leftrightarrow \sqrt{2x+1}=\sqrt{3(x+2)}+\sqrt{x+1}\Leftrightarrow 2x+1=4x+6+2\sqrt{3(x+1)(x+2)}\Leftrightarrow -2x-5=2\sqrt{3(x+1)(x+2)}\Leftrightarrow \left\{\begin{matrix}
2x+5\leq 0 & & \\
4x^2+20x+25=12(x^2+3x+2) & &
\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\leq \frac{-5}{2} & & \\
8x^2+16x-1=0 & &
\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\leq \frac{-5}{2} & & \\
\begin{bmatrix}
x=\frac{-4+3\sqrt{2}}{4} & & \\
x=\frac{-4-3\sqrt{2}}{4} & &
\end{bmatrix} & &
\end{matrix}\right.\Rightarrow x=\frac{-4-3\sqrt{2}}{4}$
Đối chiếu với ĐK, ta có ptvn