2n+5/2n-1 là số nguyên

2 câu trả lời

Để `(2n+5)/(2n-1)` là số nguyên thì :

`⇒ {(2n+5 \vdots 2n-1),(2n-1 \vdots 2n-1):}`

`⇒ (2n+5)-(2n-1) \vdots 2n-1`

`⇔ 6 \vdots 2n-1`

`⇒ 2n-1∈Ư(6)={1;6;2;3;-1;-6;-2;-3}`

`⇒ 2n∈{2;7;3;4;0;-5;-1;-2}`

`⇒ n∈{1;7/2;3/2;2;0;-5/2;-1/2;-1}`

Vậy `n∈{1;7/2;3/2;2;0;-5/2;-1/2;-1}``

 

Đáp án: $n\in$ { $1;0;\dfrac72;-\dfrac52;\dfrac32;-1$ }

Giải thích các bước giải:

Để $\dfrac{2n+5}{2n-1}$ là số nguyên

Thì $(2n+5)\vdots (2n-1)$

$\Rightarrow [(2n+5)-(2n-1)]\vdots (2n-1)$ (vì $(2n-1)\vdots (2n-1)$)

$\Rightarrow [2n+5-2n+1]\vdots (2n-1)$

$\Rightarrow 6\vdots (2n-1)$

$\Rightarrow 2n-1\in Ư(6)$

$\Rightarrow 2n-1\in \text{{1;-1;6;-6;2;-2;3;-3}}$

$\Rightarrow 2n\in \text{{1+1;-1+1;6+1;-6+1;2+1;-2+1;3+1;-3+1}}$

$\Rightarrow 2n\in \text{{2;0;7;-5;3;-2}}$

$\Rightarrow n\in $ { $\dfrac22;\dfrac02;\dfrac72;-\dfrac52;\dfrac32;-\dfrac22$ }

$\Rightarrow n\in$ { $1;0;\dfrac72;-\dfrac52;\dfrac32;-1$ }

Vậy $n\in$ { $1;0;\dfrac72;-\dfrac52;\dfrac32;-1$ }

Câu hỏi trong lớp Xem thêm