1.tìm m để y=căn m+1/ 3x^2-2x+m có tập xđ D=R

1 câu trả lời

Đáp án:

$m > \frac{1}{3}$

Giải thích các bước giải: $\begin{array}{l} y = \sqrt {\frac{{m + 1}}{{3{x^2} - 2x + m}}} \\ TH1:m + 1 \ge 0 \Leftrightarrow m \ge - 1\\ HS\,xac\,dinh\,tren\,R \Leftrightarrow 3{x^2} - 2x + m > 0,\forall x \in R\\ \Leftrightarrow \left\{ \begin{array}{l} 3 > 0\\ \Delta ' = 1 - 3m < 0 \end{array} \right. \Leftrightarrow m > \frac{1}{3}\\ Ket\,hop\,m \ge - 1\,ta\,duoc\,m > \frac{1}{3}\\ TH2:m + 1 < 0 \Leftrightarrow m < - 1\\ HS\,xac\,dinh\,tren\,R \Leftrightarrow 3{x^2} - 2x + m < 0,\forall x \in R\\ Dieu\,nay\,khong\,xay\,ra\,vi\,ham\,so\,y = 3{x^2} - 2x + mco\,a = 3 > 0\,nen\,khong\,the\,luon\,am\,tren\,R\,duoc. \end{array}$

Câu hỏi trong lớp Xem thêm