1, Tính A=1/2-1/2^2+1/2^3-1/2^4+...+1/2^99-1/2^100 Ai giúp mình với!
2 câu trả lời
Đáp án+Giải thích các bước giải:
`A=1/2-1/2^2+1/2^3-1/2^4+. . .+1/2^99-1/2^100`$\\$`=>2A=1-1/2+1/2^2-1/2^3+. . . +1/2^98-1/2^99`$\\$`=>2A+A=1-2^100`$\\$`=>3A=1-2^100`$\\$`=>A=(1-2^100)/3`
`A=1/2-1/2^2+1/2^3-1/2^4+...+1/2^99-1/2^100`
`<=> 2A = 1 - 1/2+1/2^2-1/2^3+1/2^4-...-1/2^99`
`<=> 2A + A = (1 - 1/2+1/2^2-1/2^3+1/2^4-...-1/2^99)+ (1/2-1/2^2+1/2^3-1/2^4+...+1/2^99-1/2^100)`
`<=> 3A = (1 - 1/2+1/2^2-1/2^3+1/2^4-...-1/2^99 + 1/2-1/2^2+1/2^3-1/2^4+...+1/2^99-1/2^100)`
`<=> 3A = 1 - 1/2^100`
`<=> A = (1 - 1/2^100)/3`