1 . Cho một tam giác đều ABC cạnh a. Người ta dựng một hình chữ nhật MNPQ có cạnh MN nằm trên cạnh BC, hai đỉnh P và Q theo thứ tự nằm trên hai cạnh AC và AB của tam giác. Xác định vị trí của điểm M sao cho hình chữ nhật có diện tích lớn nhất và tìm giá trị lớn nhất đó. 2 . Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng: P(n)=480 – 20n. Hỏi phải thả bao nhiêu cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất.
1 câu trả lời
$$\eqalign{ & {{MQ} \over {AH}} = {{BM} \over {BH}} \Leftrightarrow {{MQ} \over {{{a\sqrt 3 } \over 2}}} = {x \over {{a \over 2}}} \Leftrightarrow MQ = x\sqrt 3 = NP \cr & {{PQ} \over {BC}} = {{AQ} \over {AB}} = {{MH} \over {BH}} \Leftrightarrow {{PQ} \over a} = {{{a \over 2} - x} \over {{a \over 2}}} \cr & \Leftrightarrow PQ = a - 2x \cr & \Rightarrow {S_{MNPQ}} = PQ.QM = \left( {a - 2x} \right).x\sqrt 3 \cr & = - \sqrt 3 \left( {2{x^2} - ax} \right) \cr & Xet\,\,f\left( x \right) = 2{x^2} - ax \cr & f'\left( x \right) = 4x - a = 0 \Leftrightarrow x = {a \over 4} \cr & f\left( 0 \right) = 0;\,\,f\left( {{a \over 4}} \right) = - {{{a^2}} \over 8};\,\,f\left( {{a \over 2}} \right) = 0 \cr & \Rightarrow {\mathop{\rm minf}\nolimits} \left( x \right) = - {{{a^2}} \over 8} \Rightarrow {S_{MNPQ\,\,\max }} = {{{a^2}\sqrt 3 } \over 8} \cr} $$ Câu 2 bạn xem lại đề bài nhé!