Trả lời bởi giáo viên
Đáp án đúng: b
$\begin{array}{l}\lim \dfrac{{2{n^2} - 3}}{{ - 2{n^3} - 4}} = \lim \dfrac{{\dfrac{2}{n} - \dfrac{3}{{{n^3}}}}}{{ - 2 - \dfrac{4}{{{n^3}}}}} = \dfrac{0}{{ - 2}} = 0.\\\lim \dfrac{{2{n^2} - 3}}{{ - 2{n^2} - 1}} = \lim \dfrac{{2 - \dfrac{3}{{{n^2}}}}}{{ - 2 - \dfrac{1}{{{n^2}}}}} = \dfrac{2}{{ - 2}} = - 1.\\\lim \dfrac{{2{n^2} - 3}}{{2{n^2} + 1}} = \lim \dfrac{{2 - \dfrac{3}{{{n^2}}}}}{{2 + \dfrac{1}{{{n^2}}}}} = \dfrac{2}{2} = 1.\\\lim \dfrac{{2{n^3} - 3}}{{2{n^2} - 1}} = \lim \dfrac{{2 - \dfrac{3}{{{n^3}}}}}{{\dfrac{2}{n} - \dfrac{1}{{{n^3}}}}} = + \infty .\end{array}$
Hướng dẫn giải:
Chia cả tử mẫu của phân thức cho lũy thừa bậc cao nhất của tử và mẫu.