Câu hỏi:
2 năm trước
Tìm $m$ để phương trình $2m{x^2} - \left( {2m + 1} \right)x - 3 = 0$ có nghiệm là $x = 2$.
Trả lời bởi giáo viên
Đáp án đúng: c
Thay $x = 2$ vào phương trình $2m{x^2} - \left( {2m + 1} \right)x - 3 = 0$ ta được: $2m{.2^2} - \left( {2m + 1} \right).2 - 3 = 0 \Leftrightarrow 4m - 5 = 0 \Leftrightarrow m = \dfrac{5}{4}$
Vậy $m = \dfrac{5}{4}$ là giá trị cần tìm.
Hướng dẫn giải:
Thay $x = {x_0}$ vào phương trình đã cho ta được phương trình ẩn $m$. Giải phương trình ta tìm được $m$.