Trả lời bởi giáo viên
Ta có: $kC_n^k = k.\dfrac{{n!}}{{k!\left( {n - k} \right)!}} = \dfrac{{n.\left( {n - 1} \right)!}}{{\left( {k - 1} \right)!\left[ {n - 1 - \left( {k - 1} \right)} \right]!}} = n.C_{n - 1}^{k - 1}\,\,\,\left( * \right)$
Áp dụng tính chất (*) ta có: \(kC_n^k = nC_{n - 1}^{k - 1}\) với \(1 \le k \le n\)
Khi đó: \(S = nC_{n - 1}^0 + nC_{n - 1}^1 + ... + nC_{n - 1}^{n - 1} = n\left( {C_{n - 1}^0 + C_{n - 1}^1 + C_{n - 1}^2 + ... + C_{n - 1}^{n - 1}} \right)\)
Ta có: \({\left( {a + b} \right)^{n - 1}} = C_{n - 1}^0{a^{n - 1}} + C_{n - 1}^1{a^{n - 2}}b + C_{n - 1}^2{a^{n - 3}}{b^2} + ... + C_{n - 1}^{n - 2}a{b^{n - 2}} + C_{n - 1}^{n - 1}{b^{n - 1}}\)
Thay \(a = 1,b = 1\) ta có: \(C_{n - 1}^0 + C_{n - 1}^1 + C_{n - 1}^2 + ... + C_{n - 1}^{n - 1} = {(1 + 1)^{n - 1}} = {2^{n - 1}}\)
Vậy \(S = n\left( {C_{n - 1}^0 + C_{n - 1}^1 + C_{n - 1}^2 + ... + C_{n - 1}^{n - 1}} \right) = n{.2^{n - 1}}\)
Hướng dẫn giải:
+) Số hạng tổng quát của tổng có dạng \(kC_n^k\), vì vậy ta có thể áp dụng ngay tính chất \(kC_n^k = nC_{n - 1}^{k - 1}\)
+) Xuất phát từ khai triển nhị thức \({\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
+) Thay \(a,b,n\) bằng các giá trị thích hợp.