Ông A dự định sử dụng hết 5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Trả lời bởi giáo viên
Gọi chiều rộng của bể cá là x (m) \(\left( {x > 0} \right) \Rightarrow \) Chiều dài của bể cá là \(2x\,\,\left( m \right)\)
Gọi h là chiều cao của bể cá ta có \(2{x^2} + 2xh + 4xh = 5 \Leftrightarrow 2{x^2} + 6xh = 5 \Leftrightarrow h = \dfrac{{5 - 2{x^2}}}{{6x}}\)
Khi đó thể tích của bể cá là \(2{x^2}.\dfrac{{5 - 2{x^2}}}{{6x}} = \dfrac{1}{3}\left( {5x - 2{x^3}} \right) = \dfrac{1}{3}f\left( x \right)\)
Xét hàm số \(f\left( x \right) = 5x - 2{x^3}\,\,\left( {x > 0} \right)\) có \(f'\left( x \right) = 5 - 6{x^2} = 0 \Leftrightarrow x = \sqrt {\dfrac{5}{6}} \)
Lập BBT :
\( \Rightarrow \mathop {\max }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = f\left( {\sqrt {\dfrac{5}{6}} } \right)\)
\( \Rightarrow {V_{\max }} = \dfrac{1}{3}f\left( {\sqrt {\dfrac{5}{6}} } \right) = \dfrac{{5\sqrt {50} }}{{27}} \approx 1,01{m^3}\)
Hướng dẫn giải:
Gọi chiều rộng bể cá là x, tính chiều dài và chiều cao của bế cá theo x.
Tính thể tích của bể cá theo x, sử dụng phương pháp hàm số tìm GTLN của thể tích bể cá.