Nếu tung một đồng xu 30 lần liên tiếp có 12 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt S bằng bao nhiêu?
Trả lời bởi giáo viên
Tổng số lần gieo là 30.
Số lần gieo được mặt S là 30-12=18.
Xác suất thực nghiệm xuất hiện mặt S là: \(\dfrac{{18}}{{30}} = \dfrac{3}{5}\)
Hướng dẫn giải:
- Xác định tổng số lần gieo và số lần gieo được mặt S.
- Xác suất thực nghiệm= Số lần được mặt S: Tổng số lần gieo
Câu hỏi khác
Tung hai đồng xu cân đối 50 lần ta được kết quả như sau:
Sự kiện |
Hai đồng sấp |
Một đồng sấp, một đồng ngửa |
Hai đồng ngửa |
Số lần |
22 |
20 |
8 |
Xác suất thực nghiệm của sự kiện “Có một đồng xu sấp, một đồng xu ngửa” là
Tung hai đồng xu cân đối 50 lần ta được kết quả như sau:
Sự kiện |
Hai đồng sấp |
Một đồng sấp, một đồng ngửa |
Hai đồng ngửa |
Số lần |
22 |
20 |
8 |
Xác suất thực nghiệm của sự kiện “Hai đồng xu đều sấp”
Gieo một con xúc xắc 6 mặt 50 lần ta được kết quả như sau:
Mặt |
1 chấm |
2 chấm |
3 chấm |
4 chấm |
5 chấm |
6 chấm |
Số lần |
8 |
7 |
3 |
12 |
10 |
10 |
Hãy tính xác suất thực nghiệm của sự kiện gieo được mặt có số lẻ chấm trong 50 lần gieo trên.
Trong hộp có một số bút xanh, một số bút vàng và một số bút đỏ. lấy ngẫu nhiên 1 bút từ hộp, xem màu gì rồi trả lại. Lặp lại hoạt động trên 40 lần ta được kết quả như sau:
Màu bút |
Bút xanh |
Bút vàng |
Bút đỏ |
Số lần |
14 |
10 |
16 |
Tính xác suất thực nghiệm của sự kiện lấy được màu đỏ