Nếu tung một đồng xu 22 lần liên tiếp thì, có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng bao nhiêu?
Trả lời bởi giáo viên
Tổng số lần gieo là 22.
Số lần gieo được mặt N là 14.
Xác suất thực nghiệm xuất hiện mặt N là: \(\dfrac{{14}}{{22}} = \dfrac{7}{{11}}\)
Hướng dẫn giải:
- Xác định tổng số lần gieo và số lần gieo được mặt N.
- Xác suất thực nghiệm= Số lần được mặt N: Tổng số lần gieo
Câu hỏi khác
Tung đồng xu 15 lần liên tiếp và kết quả thu được ghi lại trong bảng sau:
Lần tung |
Kết quả |
Lần tung |
Kết quả |
Lần tung |
Kết quả |
1 |
S |
6 |
N |
11 |
N |
2 |
S |
7 |
S |
12 |
S |
3 |
N |
8 |
S |
13 |
N |
4 |
S |
9 |
N |
14 |
N |
5 |
N |
10 |
N |
15 |
N |
N: Ngửa
S: Sấp
Số lần xuất hiện mặt ngửa (N) là
Tung đồng xu 15 lần liên tiếp và kết quả thu được ghi lại trong bảng sau:
Lần tung |
Kết quả |
Lần tung |
Kết quả |
Lần tung |
Kết quả |
1 |
S |
6 |
N |
11 |
N |
2 |
S |
7 |
S |
12 |
S |
3 |
N |
8 |
S |
13 |
N |
4 |
S |
9 |
N |
14 |
N |
5 |
N |
10 |
N |
15 |
N |
N: Ngửa
S: Sấp
Xác suất thực nghiệm xuất hiện mặt ngửa là
Tung đồng xu 15 lần liên tiếp và kết quả thu được ghi lại trong bảng sau:
Lần tung |
Kết quả |
Lần tung |
Kết quả |
Lần tung |
Kết quả |
1 |
S |
6 |
N |
11 |
N |
2 |
S |
7 |
S |
12 |
S |
3 |
N |
8 |
S |
13 |
N |
4 |
S |
9 |
N |
14 |
N |
5 |
N |
10 |
N |
15 |
N |
N: Ngửa
S: Sấp
Xác suất thực nghiệm xuất hiện mặt S là
Gieo một con xúc xắc 6 mặt 50 lần ta được kết quả như sau:
Mặt |
1 chấm |
2 chấm |
3 chấm |
4 chấm |
5 chấm |
6 chấm |
Số lần |
8 |
7 |
3 |
12 |
10 |
10 |
Hãy tính xác suất thực nghiệm của sự kiện gieo được mặt có số lẻ chấm trong 50 lần gieo trên.