Nếu tích phân \(I = \int\limits_0^{\dfrac{\pi }{6}} {{{\sin }^n}x\cos xdx} = \dfrac{1}{{64}}\) thì $n$ bằng bao nhiêu?
Trả lời bởi giáo viên
Đặt \(t = \sin x \Rightarrow dt = \cos xdx\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \dfrac{\pi }{6} \Rightarrow t = \dfrac{1}{2}\end{array} \right.\)
Khi đó \(I = \int\limits_0^{\dfrac{1}{2}} {{t^n}dt} = \left. {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right|_0^{\dfrac{1}{2}} = \dfrac{{{{\left( {\dfrac{1}{2}} \right)}^{n + 1}}}}{{n + 1}} = \dfrac{1}{{{2^{n + 1}}\left( {n + 1} \right)}} = \dfrac{1}{{64}}\)
Thử đáp án ta thấy $n = 3$ thỏa mãn
Hướng dẫn giải:
- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .
- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).
- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).
- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).