Một vật được thả rơi tự do, khi chạm đất tốc độ của vật là 30 m/s. Chọn gốc tọa độ tại vị trí thả vật, gốc thời gian là lúc thả vật, chiều dương hướng xuống, lấy g = 10m/s2. Khi tốc độ của vật là 20 (m/s) thì vật còn cách đất bao nhiêu và sau bao lâu thì vật rơi đến đất (kể từ khi tốc độ của vật là 20m/s).
Trả lời bởi giáo viên
Tóm tắt:
Tốc độc của vật khi chạm đất: \({{v}_{cd}}~=30m/s\)
Chọn gốc tọa độ tại vị trí thả vật, gốc thời gian là lúc thả vật, chiều dương hướng xuống, g = 10m/s2.
Khi v = 20 (m/s) thì vật còn cách đất bao nhiêu và sau bao lâu thì vật rơi đến đất (kể từ khi tốc độ của vật là 20m/s).
Giải:
+ Thời gian từ lúc rơi đến khi chạm đất: \(v=g.t\Rightarrow t=3(s)\)
+ Độ cao lúc thả vật: \(h=\frac{g.{{t}^{2}}}{2}\Rightarrow h=45(m)\)
+ Khi tốc độ v1 = 20 m/s, ta có: \(v_{1}^{2}=2g{{h}_{1}}\Rightarrow {{h}_{1}}=20(m)\)
→ Vật cách mặt đất một đoạn: \(\Delta h=h-{{h}_{1}}=45-20=25(m)\)
+ Thời gian từ lúc thả đến khi vật đạt tốc độ là 20m/s là t1:
\({{v}_{1}}=g.{{t}_{1}}\Rightarrow {{t}_{1}}=2(s)\Rightarrow {{t}_{2}}=t-{{t}_{1}}=1(s)\)
Hướng dẫn giải:
Áp dụng công thức:
- Thời gian từ lúc rơi đến khi chạm đất: v = g.t
- Độ cao lúc thả vật:\(h = \frac{{g.{t^2}}}{2}\)
- Công thức độc lập với thời gian:
\(v_{^1}^2 - v_0^2 = 2g{h_1}\)
- Công thức vận tốc v = gt