Một tàu thủy chở hàng đi xuôi dòng sông trong 4 giờ đi được 100 km, khi chạy ngược dòng trong 4 giờ thì đi được 60 km. Tính vận tốc của tàu so với nước. Coi vận tốc của nước đối bờ là luôn luôn không đổi.
Trả lời bởi giáo viên
Vật (1): Tàu thuỷ; Vật (2): dòng nước; Vật (3): bờ sông.
Với \(\overrightarrow {{v_{12}}} \,\)là vận tốc của tàu so với nước; \(\,\,\overrightarrow {{v_{23}}} \) là vận tốc của nước so với bờ.
Thời gian chuyển động là: \(t = \dfrac{{AB}}{{{v_{13}}}}\)
+ Tàu đi xuôi dòng ta có \(\overrightarrow {{v_{12}}} \, \uparrow \uparrow \,\,\overrightarrow {{v_{23}}} \)
Vận tốc của tàu so với bờ là: \({v_{13}} = {v_{12}} + {v_{23}}\)
mà \({v_{13}} = \dfrac{{{S_1}}}{{{t_x}}} = \dfrac{{100}}{4} = 25km/h \Rightarrow {v_{12}} + {v_{23}} = 25\,\,\left( {km/h} \right)\,\,\,\left( * \right)\)
+ Tàu đi ngược dòng ta có: \(\overrightarrow {{v_{12}}} \, \uparrow \downarrow \,\,\overrightarrow {{v_{23}}} \)
Vận tốc của tàu so với bờ là: \({v_{13}}' = {v_{12}} - {v_{23}}\)
mà \({v_{13}}' = \dfrac{{{S_2}}}{{{t_x}}} = \dfrac{{60}}{4} = 15km/h \Rightarrow {v_{12}} - {v_{23}} = 15\,\,\left( {km/h} \right)\,\,\,\left( {**} \right)\)
Từ (*) và (**) ta có: \(\left\{ \begin{array}{l}{v_{12}} + {v_{23}} = 25\\{v_{12}} - {v_{23}} = 15\end{array} \right.\, \Rightarrow \left\{ \begin{array}{l}{v_{12}} = 20km/h\\{v_{23}} = 5km/h\end{array} \right.\)
→ Vận tốc của tàu so với nước là v12 = 20 km/h
Hướng dẫn giải:
Vật (1) : Vật chuyển động
Vật (2): Hệ quy chiếu chuyển động
Vật (3): Hệ quy chiếu đứng yên.
Ta có:
+ \(\overrightarrow {{v_{12}}} \): vận tốc của vật chuyển động (1) so với hệ quy chiếu chuyển động (2) → Vận tốc tương đối
+ \(\overrightarrow {{v_{13}}} \): vận tốc của vật chuyển động (1) so với hệ quy chiếu đứng yên (3) → Vận tốc tuyệt đối
+ \(\overrightarrow {{v_{23}}} \): vận tốc của hệ quy chiếu chuyển động (2) so với hệ quy chiếu chuyển động (3) → Vận tốc kéo theo.
Công thức cộng vận tốc: \(\overrightarrow {{v_{13}}} = \overrightarrow {{v_{12}}} + \overrightarrow {{v_{23}}} \)