Hai cầu thủ bóng đá sút phạt đền, mỗi người được sút một quả với xác suất bàn tương ứng là $0,8$ và $0,7$. Tính xác suất để chỉ có $1$ cầu thủ làm bàn.
Trả lời bởi giáo viên
Gọi $A$ là biến cố cầu thủ thứ nhất ghi được bàn thắng.
Ta có \(P\left( A \right) = 0,8\) và \(P(\overline A ) = 0,2\)
Gọi $B$ là biến cố cầu thủ thứ nhất ghi được bàn thắng.
Ta có \(P\left( B \right) = 0,7\) và \(P(\overline B) = 0,3\)
Ta xét hai biến cố xung khắc sau:
\(A\overline B\) “Chỉ có cầu thủ thứ nhất làm bàn”.
Ta có:
\(P\left( {A\overline B} \right) = P\left( A \right).P\left( {\overline B} \right) \) \(= 0,8.0,3 = 0,24\)
\(B\bar A\) “ Chỉ có cầu thủ thứ hai làm bàn” .
Ta có:
$P\left( {B\overline A} \right) = P\left( B \right).P\left( {\overline A} \right) $ $= 0,7.0,2 = 0,14$
Gọi $C$ là biến cố chỉ có $1$ cầu thủ làm bàn.
Ta có \(P(C) = 0,24 + 0,14 = 0,38\)
Hướng dẫn giải:
Sử dụng các công thức tính xác suất.
- Nếu $A$ và $B$ là hai biến cố độc lập thì \(P(AB) = P(A).P(B)\) .
- Nếu $A $ và $B$ là hai biến cố xung khắc thì \(P(A \cup B) = P(A) + P(B)\) .
- Nếu $A$ và $B$ là hai biến cố đối nhau thì \(P\left( A \right) + P(B) = 1\)