Giá trị của biểu thức \(S = {5^n}C_n^0 - {5^{n - 1}}.2.C_n^1 + {5^{n - 2}}{.2^2}C_n^2 + ... + 5{\left( { - 2} \right)^{n - 1}}C_n^{n - 1} + {\left( { - 2} \right)^n}C_n^n\)\(\) bằng:
Trả lời bởi giáo viên
Ta có: \({\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Thay \(a = 5,b = - 2\) ta có:
\(\begin{array}{l}{\left( {5 - 2} \right)^n} = C_n^0{5^n} + C_n^1{5^{n - 1}}\left( { - 2} \right) + C_n^2{5^{n - 2}}{\left( { - 2} \right)^2} + ... + C_n^{n - 1}5{\left( { - 2} \right)^{n - 1}} + C_n^n{\left( { - 2} \right)^n}\\ \Leftrightarrow {3^n} = {5^n}C_n^0 - {5^{n - 1}}.2.C_n^1 + {5^{n - 2}}{.2^2}C_n^2 + ... + 5{\left( { - 2} \right)^{n - 1}}C_n^{n - 1} + {\left( { - 2} \right)^n}C_n^n\end{array}\)
Hướng dẫn giải:
+) Xuất phát từ khai triển nhị thức \({\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
+) Thay \(a,b,n\) bằng các giá trị thích hợp.
Giải thích thêm:
Một số em có thể sẽ chọn $a=5,b=-2$ nhưng tính nhầm thành $(-3)^n$ dẫn đến chọn nhầm đáp án C là sai.