Câu hỏi:
2 năm trước

Điền số thích hợp vào ô trống:

Từ bốn chữ số $0;{\rm{ 3; 5;}}\,\,9$ có thể viết được

số có ba chữ số khác nhau và chia hết cho \(5\).

Trả lời bởi giáo viên

Đáp án:

Từ bốn chữ số $0;{\rm{ 3; 5;}}\,\,9$ có thể viết được

số có ba chữ số khác nhau và chia hết cho \(5\).

Để lập được số chia hết cho \(5\) thì các số đó phải có chữ số tận cùng là \(0\) hoặc \(5\).

Do đó các số chia hết cho \(5\) được lập từ bốn chữ số $0;{\rm{ 3; 5;}}\,9$ phải có chữ số tận cùng là \(0\) hoặc \(5\).

Từ bốn chữ số $0;{\rm{ 3; 5;}}\,9$ ta viết được các số có ba chữ số khác nhau và chia hết cho \(5\) là:

\(350\,;\,\,390\,;\,530\,;\,\,590;\,\,930\,;\,\,950;\,\,\,305\,;\,\,395\,;\,\,905\,;935\).

Có \(10\) số có ba chữ số khác nhau và chia hết cho \(5\).
Vậy đáp án đúng điền vào ô trống là \(10\).

Hướng dẫn giải:

Áp dụng tính chất các số chữ số tận cùng là  \(0\) hoặc \(5\) thì chia hết cho \(5\) để viết các số có ba chữ số khác nhau từ bốn chữ số trên mà chia hết cho \(5\).

Ta đếm số lượng các số chia hết cho \(5\) và điền vào ô trống.

Câu hỏi khác