Câu hỏi:
2 năm trước

Có bao nhiêu số phức z thỏa mãn \({\left| z \right|^2} = 2\left| {z + \overline z } \right| + 4\) và \(\left| {z - 1 - i} \right| = \left| {z - 3 + 3i} \right|\) ?

Trả lời bởi giáo viên

Đáp án đúng: b

Gọi số phức \(z = a + bi \Rightarrow \overline z  = a - bi\).

Từ giả thiết thứ nhất ta có:

\({\left| z \right|^2} = 2\left| {z + \overline z } \right| + 4 \Leftrightarrow {a^2} + {b^2} = 2\left| {a + bi + a - bi} \right| + 4 \Leftrightarrow {a^2} + {b^2} - 2.2\left| a \right| - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{a^2} + {b^2} - 4a - 4 = 0\\{a^2} + {b^2} + 4a - 4 = 0\end{array} \right.\)

\( \Rightarrow \) Tập hợp các số phức z là đường tròn \(\left( {{C_1}} \right):\,\,{x^2} + {y^2} - 4x - 4 = 0\) hoặc \(\left( {{C_2}} \right):\,\,{x^2} + {y^2} + 4x - 4 = 0\).

Từ giả thiết thứ hai ta có:

\(\begin{array}{l}\;\;\;\;\left| {z - 1 - i} \right| = \left| {z - 3 + 3i} \right|\\ \Leftrightarrow \left| {a - 1 + bi - i} \right| = \left| {a - 3 + bi + 3i} \right|\\ \Leftrightarrow {\left( {a - 1} \right)^2} + {\left( {b - 1} \right)^2} = {\left( {a - 3} \right)^2} + {\left( {b + 3} \right)^2}\\ \Leftrightarrow  - 2a + 1 - 2b + 1 =  - 6a + 9 + 6b + 9\\ \Leftrightarrow 4a - 8b - 16 = 0\\ \Leftrightarrow a - 2b - 4 = 0\end{array}\)

\( \Rightarrow \) Tập hợp các số phức z là đường thẳng \(x - 2y - 4 = 0\,\,\left( d \right)\).

Vậy số phức thỏa mãn 2 giả thiết trên là số giao điểm của \(d\) với \(\left( {{C_1}} \right)\) và \(\left( d \right)\) với \(\left( {{C_2}} \right)\).

Lời giải - Đề minh họa THPTQG môn Toán 2019 - ảnh 1

Dựa vào hình vẽ ta thấy có 3 giao điểm của \(d\) với \(\left( {{C_1}} \right)\) và \(\left( d \right)\) với \(\left( {{C_2}} \right)\). Vậy có 3 số phức thỏa mãn yêu cầu bài toán.

Hướng dẫn giải:

+) Gọi số phức \(z = a + bi \Rightarrow \overline z  = a - bi\).

+) Từ mỗi giải thiết đã cho, tìm đường biểu diễn số phức z.

+) Tìm giao điểm của đường biểu diễn số phức z ở giả thiết thứ nhất và thứ 2.

Giải thích thêm:

Sau khi tìm ra các đường biểu diễn số phức z, học sinh có thể làm tiếp theo phương pháp giải hệ phương trình bằng phương pháp thế.

Câu hỏi khác