Câu hỏi:
2 năm trước
Có 100 học sinh tham dự kì thi học sinh giỏi Toán cấp tỉnh (thang điểm 20). Kết quả như sau:
Điểm |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
Tần số |
1 |
1 |
3 |
5 |
8 |
13 |
19 |
24 |
14 |
10 |
2 |
Trả lời bởi giáo viên
Đáp án đúng: d
\(\begin{array}{l}n = 100\\\overline x = \dfrac{1}{n}\left( {{x_1}{n_1} + {x_2}{n_2} + ... + {x_k}{n_k}} \right) = 15,23\\S_x^2 = \dfrac{1}{n}\left( {{n_1}x_1^2 + {n_2}x_2^2 + ... + {n_k}x_k^2} \right) - {\overline x ^2}\\ = \dfrac{{23591}}{{100}} - {15,23^2} \approx 3,96.\end{array}\)
Hướng dẫn giải:
\(S_x^2 = \dfrac{1}{n}\left[ {{n_1}{{\left( {{x_1} - \overline x } \right)}^2} + {n_2}{{\left( {{x_2} - \overline x } \right)}^2} + ... + {n_k}{{\left( {{x_k} - \overline x } \right)}^2}} \right]\)\( = \dfrac{1}{n}\left( {{n_1}x_1^2 + {n_2}x_2^2 + ... + {n_k}x_k^2} \right) - {\overline x ^2}\)
Trong đó: \(\overline x \) là số trung bình của bảng; \({S_x}\) là độ lệch chuẩn; \(S_x^2\) là phương sai
Câu hỏi khác
Câu 1:
Tuổi của 16 công nhân xưởng sản xuất được thống kê trong bảng sau.
Tuổi |
25 |
26 |
27 |
29 |
30 |
33 |
Cộng |
Số người |
2 |
3 |
4 |
3 |
3 |
1 |
16 |
Tìm số trung bình \(\overline x \) của mẫu số liệu trên.
90