Cho tích phân \(I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{6\tan x}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx} \). Giả sử đặt \(u = \sqrt {3\tan x + 1} \) thì ta được:
Trả lời bởi giáo viên
Đặt \(u = \sqrt {3\tan x + 1} \Rightarrow {u^2} = 3\tan x + 1 \Leftrightarrow 2udu = \dfrac{3}{{{{\cos }^2}x}}dx \Rightarrow \dfrac{{dx}}{{{{\cos }^2}x}} = \dfrac{{2udu}}{3}\)
Và \(\tan x = \dfrac{{{u^2} - 1}}{3}\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = 1\\x = \dfrac{\pi }{4} \Rightarrow u = 2\end{array} \right.\)
Khi đó ta có: \(I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{6\tan x}}{{{{\cos }^2}x\sqrt {3\tan x + 1} }}dx} \Rightarrow I = \int\limits_1^2 {\dfrac{{2\left( {{u^2} - 1} \right)2udu}}{{3u}}} = \dfrac{4}{3}\int\limits_1^2 {\left( {{u^2} - 1} \right)du} \)
Hướng dẫn giải:
- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .
- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).
- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).
- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).