Câu hỏi:
2 năm trước
Cho \(n\left( {n \ge 2} \right)\) tia chung gốc, trong đó không có hai tia nào trùng nhau. Nếu có \(28\) góc tạo thành thì \(n\) bằng bao nhiêu?
Trả lời bởi giáo viên
Đáp án đúng: a
Từ đề bài ta có \(\dfrac{{n\left( {n - 1} \right)}}{2} = 28\) nên \(n\left( {n - 1} \right) = 56\) mà \(56 = 8.7\), lại có $(n-1)$ và $n$ là hai số tự nhiên liên tiếp nên \(n = 8.\)
Vậy \(n = 8.\)
Hướng dẫn giải:
Sử dụng:
Nếu có \(n\,\left( {n \ge 2} \right)\) tia chung gốc (không có tia nào trùng nhau) thì số lượng góc tạo thành là \(\dfrac{{n\left( {n - 1} \right)}}{2}\)
Từ đó tìm ra \(n.\)