Cho hình thang vuông $ABDC$ vuông tại $A$ và $B$ , biết cạnh $AB = BC = 3m,AD = 5cm$. Tính diện tích xung quanh hình nón cụt tạo thành khi quay hình thang quanh cạnh $AB$ .
Trả lời bởi giáo viên
Xét tam giác vuông \(ABD\) ta có \(BD = \sqrt {A{D^2} - A{B^2}} = \sqrt {{5^2} - {3^2}} = 4\,\,\left( {cm} \right)\)
Kẻ $CH \bot BD$ tại \(H\) . Khi đó \(ACHB\) là hình vuông nên\(CH = AB = AC = BH = 3\,cm \Rightarrow HD = 4 - 3 = 1\,cm\)
Xét tam giác vuông \(CHD\) ta có \(C{D^2} = C{H^2} + H{D^2} = {3^2} + {1^2}=10\Rightarrow CD = \sqrt {10} \)
Khi quay hình thang vuông \(ABDC\) quanh cạnh \(AB\) ta được hình nón cụt có bán kính đáy nhỏ \(AC\) , bán kính đáy lớn \(BD\) , đường sinh \(CD\) và chiều cao \(AB\) .
Khi đó diện tích xung quanh hình nón cụt là ${S_{xq}} = \pi (R + r)l = \pi \left( {3 + 4} \right)\sqrt {10} = 7\pi \sqrt {10} \,\,\left( {c{m^2}} \right)$
Hướng dẫn giải:
Tính đáy \(BD\)và \(CD\) theo định lý Pytago
Sử dụng công thức diện tích xung quanh hình nón cụt ${S_{xq}} = \pi (R + r)l.$