Cho hàm số $f\left( x \right)$ xác định và có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right) < 0,\forall x \in \left( {a;b} \right)$ thì:
Trả lời bởi giáo viên
Sử dụng định lý về xét tính đồng biến, nghịch biến của hàm số trên một khoảng đã nêu ở phần phương pháp, ở đây khoảng $K=(a;b)$ ta được:
Hàm số $y = f\left( x \right)$ xác định và có đạo hàm $f'\left( x \right) < 0,\forall x \in \left( {a;b} \right)$ thì $f\left( x \right)$ nghịch biến trên $\left( {a;b} \right)$.
Hướng dẫn giải:
Sử dụng định lý:
Định lý: Cho hàm số $y = f\left( x \right)$ xác định và có đạo hàm trên $K$.
a) Nếu $f'\left( x \right) > 0,\forall x \in K$ thì hàm số $y = f\left( x \right)$ đồng biến trên $K$.
b) Nếu $f'\left( x \right) < 0,\forall x \in K$ thì hàm số $y = f\left( x \right)$ nghịch biến trên $K$.