Câu hỏi:
2 năm trước

Cho đường tròn \(\left( {O;R} \right)\) có hai dây \(AB,CD\) bằng nhau và vuông góc với nhau tại \(I\) . Giả sử \(IA = 6cm;IB = 3cm\) . Tổng khoảng cách từ tâm \(O\) dây \(AB,CD\) là

Trả lời bởi giáo viên

Đáp án đúng: c
Lời giải - Đề kiểm tra 15 phút chương 6: Đường tròn - Đề số 1 - ảnh 1

 

Xét đường tròn tâm \(\left( O \right)\),

Kẻ \(OE \bot AB\) tại \(E\) suy ra \(E\) là trung điểm của \(AB\), kẻ \(OF \bot CD\) tại \(F\).

Vì dây \(AB = CD\) nên \(OE = OF\) (hai dây bằng nhau cách đều tâm)

Xét tứ giác \(OEIF\) có \(\widehat E = \widehat F = \widehat I = 90^\circ \) nên \(OEIF\) là hình chữ nhật và \(OE = OF\) nên \(OEIF\) là hình vuông\( \Rightarrow OE = OF = EI\)

Mà \(AB = IA + IB = 9\,cm\) \( \Rightarrow EB = 4,5\,cm \Rightarrow EI = EB - IB = 1,5\,cm\) nên \(OE = OF = 1,5\,cm\)

Vậy tổng khoảng cách từ tâm đến hai dây \(AB,CD\) là \(1,5 + 1,5 = 3\,cm\).

Hướng dẫn giải:

Sử dụng kiến  thức “Hai dây bằng nhau thì cách đều tâm”  và tính chất hình vuông

Câu hỏi khác