Cho dãy số \(\left( {{u_n}} \right)\) , với \({u_n} = \dfrac{{3n - 1}}{{3n + 7}}\). Mệnh đề nào dưới đây đúng ?
Trả lời bởi giáo viên
Ta có :
\({u_{n + 1}} - {u_n} = \dfrac{{3\left( {n + 1} \right) - 1}}{{3\left( {n + 1} \right) + 7}} - \dfrac{{3n - 1}}{{3n + 7}} \) \(= \dfrac{{3n + 2}}{{3n + 10}} - \dfrac{{3n - 1}}{{3n + 7}}\) \( = \dfrac{{9{n^2} + 27n + 14 - 9{n^2} - 27n + 10}}{{\left( {3n + 10} \right)\left( {3n + 7} \right)}} \) \(= \dfrac{{24}}{{\left( {3n + 10} \right)\left( {3n + 7} \right)}} > 0\)
Do đó \(\left( {{u_n}} \right)\) là dãy số tăng.
Ta có \({u_n} = \dfrac{{3n - 1}}{{3n + 7}} = 1 - \dfrac{8}{{3n + 7}} < 1\,\,\forall n \ge 1\) nên dãy số \(\left( {{u_n}} \right)\) bị chặn trên bởi $1$.
\({u_1} = \dfrac{1}{5} \Rightarrow \left( {{u_n}} \right)\) bị chặn dưới bởi \(\dfrac{1}{5}\) .
Hướng dẫn giải:
Nhận xét tính tăng giảm của dãy \(\left( {{u_n}} \right)\), suy ra tính bị chặn và chứng minh dãy \(\left( {{u_n}} \right)\) bị chặn trên (dưới, bị chặn) bởi số xác định.