Cho $A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28$ và $B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}$ . Tính \(A - 2B.\)
Trả lời bởi giáo viên
Ta có
$\begin{array}{l}A = \left( {6888:56-{{11}^2}} \right).152 + 13.72 + 13.28\\\,\,\,\,\,\, = \left( {6888:56 - 121} \right).152 + 13.72 + 13.28\\\,\,\,\,\,\, = \left( {123 - 121} \right).152 + 13.72 + 13.28\\\,\,\,\,\,\, = 2.152 + 13.\left( {72 + 28} \right)\\\,\,\,\,\,\, = 2.152 + 13.100\\\,\,\,\,\,\, = 304 + 1300\\\,\,\,\,\,\, = 1604\end{array}$ $\begin{array}{l}B = \left[ {5082:\left( {{{17}^{29}}:{{17}^{27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left[ {5082:\left( {{{17}^{29 - 27}}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left[ {5082:\left( {{{17}^2}-{{16}^2}} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left[ {5082:\left( {289 - 256} \right) + 13.12} \right]:31 + {9^2}\\\,\,\,\,\, = \left( {5082:33 + 13.12} \right):31 + {9^2}\\\,\,\,\,\, = \left( {154 + 156} \right):31 + {9^2}\\\,\,\,\,\, = 310:31 + 81\\\,\,\,\,\, = 10 + 81 = 91.\end{array}$
Suy ra \(A - 2B = 1422.\)
Hướng dẫn giải:
Sử dụng quy tắc nhân, chia hai lũy thừa cùng cơ số và thứ tự thực hiện phép tính để tính giá trị của biểu thức.