Biết \(\dfrac{{{x^4} + 4{x^2} + 5}}{{5{x^3} + 5}}\,\, \cdot \,\,\dfrac{{2x}}{{{x^2} + 4}}\,\, \cdot \,\,\dfrac{{3{x^3} + 3}}{{{x^4} + 4{x^2} + 5}} = \dfrac{{...}}{{...}}\). Đa thức thích hợp điền vào chỗ trống ở tử và mẫu lần lượt là:;
Trả lời bởi giáo viên
Ta có: \(\dfrac{{{x^4} + 4{x^2} + 5}}{{5{x^3} + 5}}\,\, \cdot \,\,\dfrac{{2x}}{{{x^2} + 4}}\,\, \cdot \,\,\dfrac{{3{x^3} + 3}}{{{x^4} + 4{x^2} + 5}}\)
\( = \dfrac{{{x^4} + 4{x^2} + 5}}{{5({x^3} + 1)}}\,\, \cdot \,\,\dfrac{{2x}}{{{x^2} + 4}}\,\, \cdot \,\,\dfrac{{3({x^3} + 1)}}{{{x^4} + 4{x^2} + 5}} = \dfrac{{6x}}{{5({x^2} + 4)}}.\)
Vậy các đa thức thích hợp điền vào chỗ trống ở tử và mẫu lần lượt là \(6x;5\left( {{x^2} + 4} \right)\).
Hướng dẫn giải:
Bước 1: Phân tích tử và mẫu thành nhân tử.
Bước 2: Thực hiện phép nhân hai phân thức và rút gọn phân thức thu được.