2 câu trả lời
`(x^2 -4) +(x-2)(3-2x)=0`
`⇔(x-2)(x+2) +(x-2)(3-2x)=0`
`⇔(x-2).(x+2+3-2x)=0`
`⇔(x-2)(5-x)=0`
$⇔\left[\begin{matrix} x-2=0\\ 5-x=0\end{matrix}\right.$
$⇔\left[\begin{matrix} x=2\\ x=5\end{matrix}\right.$
Vậy `S={2;5}`
#andy
\[\begin{array}{l}
\left( {{x^2} - 4} \right) + \left( {x - 2} \right)\left( {3 - 2x} \right) = 0\\
\Leftrightarrow \left( {x - 2} \right)\left( {x + 2} \right) + \left( {x - 2} \right)\left( {3 - 2x} \right) = 0\\
\Leftrightarrow \left( {x - 2} \right)\left( {x + 2 + 3 - 2x} \right) = 0\\
\Leftrightarrow \left( {x - 2} \right)\left( { - x + 5} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x - 2 = 0\\
- x + 5 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 2\\
- x = - 5
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 2\\
x = 5
\end{array} \right.\\
\Rightarrow S = \left\{ {2;5} \right\}
\end{array}\]