Trong cuộc thi: "Thiết kế và trình diễn các trang phục dân tộc" do Đoàn trường THPT tổ chức vào tháng 3 năm 2018 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó có 4 tiết mục khối 12, có 5 tiết mục khối 11và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng 26 tháng 3. Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12.
1 câu trả lời
Gọi không gian mẫu của phép chọn ngẫu nhiên là 2
Số phần tử của không gian mẫu là: n(Ω)=$C_{}$$\frac{5}{12}$= 792 (không có dấu gạch giữa nha bạn)
Gọi A là biến cố “ Chọn 5 tiết mục sao cho khối nào cũng có tiết mục được biểu diễn và
trong đó có ít nhất hai tiết mục của khối 12"
Chỉ có 3 khả năng xảy ra thuận lợi cho biến cổ A là :
+ 2 tiết mục khối 12, hai tiết mục khối 10, một tiết mục khối 11
+ 2 tiết mục khối 12, 1 tiết mục khối 10, 2 tiết mục khối 11
+ 3 tiết mục khối 12, 1 tiết mục khối 10, 1 tiết mục khối 11
Câu hỏi trong lớp
Xem thêm